
EE/CprE/SE 491
Iowa State A.I. Schedule Companion

Design Document
Saturday, April 27, 2024

Project Title: Iowa State A.I. Schedule Companion

Group Number: sddec24-08

Client: Koby Fowler

Faculty Advisor: Abraham Aldaco

TeamMembers:

● Koby Fowler - Overall Application Leader

● Chandrashekar Tirunagiri - Frontend Design Leader

● Raghuram Guddati - Backend Design Leader

● Jacob Paustian - Artificial Intelligence Research Leader

● Christian Deam - Meeting Manager

● Anna Huggins - Team Manager

Executive Summary

Development Standards & Practices Used

Practices:

● Project Management Style: Waterfall

● Deployment: Continuous Integration / Continuous Deployment (CI/CD)

● Code Review

● Code Commenting

Standards:

● IEEE/ISO/IEC 29119-4-2021 - International Software Test Design Techniques

● ISO/IEC 14519: 1999 (IEEE Std 1003.5b) - Information technology--POSIX(TM) Ada

Language Interfaces--Binding for System Application Program Interface (API)

For additional information, please see section 2.3 Engineering Standards.

Summary of Requirements
● Frontend:

○ Modern, easy-to-read user-interface

○ Prompt-style communication between the user and artificial intelligence

○ Clear page navigation

○ Users can import class/degree documents

○ Users can create/sign into an account

● Backend:

○ SQL Database

■ Stores user information, class preferences, and generated schedules for

each user

○ Hosting Service

■ To allow users to connect, we will host our website through a server.

○ ChatGPT

■ Takes in user input via prompts or document upload to generate

schedules.

For additional information, please see section 2.1 Requirements.

2

Applicable Courses from Iowa State University Curriculum
● Com S 309 - Software Development Practices

● SE 422 - Cloud Computing

● SE 317 - Software Testing

● Com S 319 - Construction of User Interfaces

New Skills & Knowledge Acquired
● Artificial Intelligence API training, implementation, and application

● Amazon Web Services (AWS)

● Next.JS abstraction practices

3

Table of Contents
EE/CprE/SE 491 1
Iowa State A.I. Schedule Companion 1
Design Document 1
Executive Summary 2

Development Standards & Practices Used 2
Summary of Requirements 2
Applicable Courses from Iowa State University Curriculum 3
New Skills & Knowledge Acquired 3

Table of Contents 4

1. Introduction 6

1.1 Problem Statement 6

1.2 Intended Users 6

2. Requirements, Constraints, and Standards 9

2.1 Requirements & Constraints 9

2.2 Engineering Standards 12

3. Project Plan 14

3.1 Project Management & Tracking Procedures 14

3.2 Task Decomposition 15

3.3 Project Proposed Milestones and Evaluation Criteria 16

3.4 Project Timeline 18

3.5 Risks and Mitigation 20

3.6 Personnel Effort Requirements 21

3.7 Other Resource Requirements 23

4. Design 24
4.1 Design Exploration 24
4.2 Design Exploration 31
4.3 Proposed Design 37
4.3 Technology Considerations 46
4.4 Design Analysis 48

5. Testing 49
5. Unit Testing 49
5.2 Interface Testing 49
5.3 Integration Testing 49
5.4 System Testing 49

4

5.5 Regression Testing 50
5.6 Acceptance Testing 50
5.7 Security Testing 50
5.8 Results 50

6. Implementation 51
6.1 Hosting and Deployment: 52
6.2 Testing and Quality Assurance: 52
6.3 Security and Privacy Enhancements: 52
6.4 Design Refinement: 52
6.5 Backend Enhancements: 52
6.6 Public Release: 53
6.7 Post-Release Support and Monitoring: 53

7. Professional Responsibility 54
7.1 Areas of Responsibility 54
7.2 Project-Specific Professional Responsibility Areas 56
7.3 Most Applicable Professional Responsibility Area 57

8. Closing Material 58
8.1 Discussion 58
8.2 Conclusion 58
8.3 References 60
8.4 Appendices 61

9. Team 63
9.1 Team Members 63
9.2 Required Skill Sets 63
9.3 Skill Sets Covered by the Team 63
9.4 Project Management Style Adopted by the Team 64
9.5 Initial Project Management Roles 64
9.6 Team Contract 65

5

1. Introduction

1.1 Problem Statement

As fellow Iowa State students, we know very well how difficult it can be to sign up for

classes each semester. Especially as incoming freshmen, it feels like an impossible task to try

and lay out a four-year plan. For most, it is infeasible for them to do. Thus, students rely heavily

on their academic advisors to guide them. Academic advisors here at Iowa State are so crucial

that meetings with your advisor can become a hot commodity come class sign-up time.

Ultimately, the issue can be summed up as the following:

- There is an overwhelming amount of information to process.

- Information is scattered throughout all of Iowa State’s numerous web domains.

- Checking your schedule’s correctness is challenging and incredibly error-prone.

- As a result of all the previous points, students have low confidence in their schedule.

We will address these issues through a new app, code-named the Schedule Companion.

While we have set no limits to what this app can do, our primary goal is to address the issues

mentioned previously by creating an AI-driven system that students can interact with. We want

to provide tools to the user that allow them to give an AI assistant information about

themselves, their academic goals, and their interests, who can also give the user back

information that is correct and suitable for them.

1.2 Intended Users

The primary target audience of our project will be Iowa State students, and they will be

catered to the most. And although students will heavily benefit from our project, so will

advisors and perhaps even professors. Students will benefit the most since the whole project

revolves around them and ensuring they are satisfied with our product. By proxy, advisors

should benefit from this because they often figure out schedules for the students, so with our

application acting as a medium between both sides, this will allow advisors to have an easier job

advising students with their classes.

6

1.2.1 Students

User Description

A current Iowa State student must determine their best class options for their upcoming

semester. Although many students meet with their academic advisors to get an idea of what

courses they should take, students still must manually determine what courses to take and the

specific class times and sections.

User Needs

● A way to generate class schedule options, ideally one that considers their preferences

and course requirements

● An easy way to narrow down schedule options without having to sort through hundreds

of options

User Results from Project Solution

With our solution, students can input their specific user information and class preferences and

allow artificial intelligence to do the heavy lifting; AI will be able to consider student input and

help create preferred class schedules rather than forcing students to sort through or create their

schedule options manually.

As a result, using our application will allow students to spend less time worrying about their

upcoming semester and more time focusing on their current classes. AI Schedule Companion

will give students more power, efficiency, and ease of class scheduling.

1.2.2 Advisors

User Description

This user is an academic advisor at Iowa State University who wants to help students determine

their upcoming semester class schedule. An academic advisor would benefit from AI Schedule

Companion because the application will speed up the scheduling process and allow for the

quick creation of a baseline schedule that can be shared with or discussed with students.

User Needs

● An easy-to-follow, intuitive web application for schedule generation

● A way to share and store previously created schedules

● The ability to generate multiple schedules with different criteria

● A quick way of generating schedule options for students

7

User Results from Project Solution

For academic advisors, our web application, AI Schedule Companion, will allow for the easy

generation of semester schedules. One of the primary focuses of our solution has been to

maintain easy-to-follow, uncluttered user interfaces such that students and advisors alike can

easily navigate through the pages. Additionally, our application will allow academic advisors to

create, store, and share various schedules such that they can help multiple students. Lastly, our

solution will provide fast, customizable schedule creation- all scheduling considerations are

handled by A.I., reducing the workload on the advisor.

1.2.3 User Needs Conclusion

While advisors and students may differ in various ways, both have similar issues: difficulties

making or narrowing down schedule options, determining the best fit, and ease of access to a

scheduling tool. With our application, thinking is only needed for the initial user information

and class preferences input, and the actual schedule generation is passed on to artificial

intelligence. By allowing artificial intelligence to create class schedules, human error is reduced

by a considerable degree, allowing both advisors and students to spend less time thinking of

schedule options.

8

2. Requirements, Constraints, and Standards

2.1 Requirements & Constraints

2.1.1 Functional Requirements

● Frontend

○ User Interface Functionality

■ Users can create an account to store user information and previously

generated schedules.

■ Users can generate class schedules by inputting student-specific

information and pressing a “generate” button.

● Student information is made up of user information as well as

their class preferences:

○ User information: courses previously taken, their major,

number of credits they intend to take in a semester,

current student year, etc.

○ Class preferences: class preferences regarding time of day,

location on campus, conflicts with external obligations, etc.

■ Allows users to see class statistics

● Class statistics: information about class availability, professor,

locations, class times, and other class information.

○ User Interface Design

■ Website Theme

● Iowa State University-themed

○ Primary colors: Red, Yellow, White, and Black.

● Modern styling

○ Follow design trends in new websites to keep our user

interfaces modernized and intuitive.

● Simplistic UI design

○ Maintain sleek, simple, and readable web pages to reduce

confusion among new users.

○ Limit the number of colors to prevent the website from

being distracting.

9

● Backend

○ Database

■ Application creates an SQL database of both users (ISU student accounts)

and student information (user input)

● These are linked such that the student account and user

information can generate user-specific schedules using that

information.

● Artificial Intelligence

○ ChatGPT-4.0 Turbo

■ Takes in user input about class requirements to generate schedules.

■ Can take in user documents (like a PDF) to generate student-specific

context.

■ Can use existing ISU websites as a source of schedule planning

information.

● Hosting Service

○ Amazon Web Services (AWS)

■ To allow users to connect, we will host our website through a server.

2.1.2 Resource Requirements

● Frontend

○ Scripting

■ Next.JS 14.1: A React framework for web application development. This

resource allows for access to React Components - premade components

that can be added into our webpages without forcing us to manually do

in-depth component building. This resource also automatically configures

tools necessary for React.

○ Libraries

■ React: A JavaScript library for building user interfaces. A tool for easier

user interface development.

■ Material UI (MUI): A React component library that allows for simply,

customizable access to React components.

● Backend

○ Scripting

■ Terraform: An “infrastructure as code” tool that allows developers to

build, change, and version cloud resources efficiently.

10

○ Database

■ PostgreSQL: An advanced open-source database- allows usto store data

for our web application.

● Artificial Intelligence

○ OpenAI API

■ ChatGPT-4.0 Turbo: An artificial intelligence model that can be trained

with schedule information and used to generate schedules.

● Hosting

○ Amazon Web Services (AWS)

■ Amplify: A fully-managed continuous integration/continuous deployment

and hosting service. This resource allows for fast, secure, and reliable

rendering for our web application.

■ Elastic Compute Cloud (EC2): A web service that provides on-demand

computing and scalability capabilities for our application. This tool allows

us to build and host our web application.

■ Amazon Relational Database (RDS): A web service that provides database

automation; RDS allows for easier set up, operation, and scaling for our

relational database in the AWS Cloud.

2.1.3 Additional Requirements

● Physical

○ Accessibility

■ The application will be hosted online and can be accessed via a website

on a mobile device or computer.

2.1.4 Constraints

● Time

○ Deadlines

■ For this project, our final deliverable deadline is the end of

CPRE/EE/SE/CYBE 492

■ To accommodate our final deadline, we have a team deadline for the end

of April for a working prototype application that can take user input and

generate accurate schedule options.

● Scope

○ Project Deliverables

■ The application is accessible via mobile device or computer.

11

■ The website allows students to create an account.

■ Student accounts store their user information, preferences, and

previously generated schedules.

■ The application combines ChatGPT with student input to generate

custom, accurate class schedules.

2.2 Engineering Standards

● IEEE/ISO/IEC 29119-4-2021 - International Software Test Design

Techniques
○ Equivalence Partitioning:

■ Categorize student information inputs into different equivalence classes.

Test each partition to ensure proper handling of various scenarios. It will

be beneficial for testing consistency in AI-generated output.

○ Boundary Value Analysis:

■ Identify maximum and minimum values for credit hours, GPA

requirements, etc.

■ Test with boundary values to verify correct behavior at the edges of

acceptable ranges, particularly regarding user input and class information.

○ Decision Table Testing:

■ Define rules for course prerequisites, credit hour requirements, and

constraints using decision tables.

■ Test different combinations of input conditions against expected

outcomes.

○ State Transition Testing:

■ Model various states of a student's class schedule (e.g., planning,

finalized, in progress).

■ Test transitions between states (e.g., adding and dropping courses) to

ensure appropriate handling.

● ISO/IEC 14519: 1999 (IEEE Std 1003.5b) - Information

technology--POSIX(TM) Ada Language Interfaces--Binding for System

Application Program Interface (API)
○ Interoperability Testing:

■ Confirm our application works seamlessly with other systems or tools

(such as OpenAI or AWS).

12

■ Test communication and exchanging data with external systems. This will

be important to manage our resources efficiently.

○ Conformance Testing:

■ Ensure our application meets the defined specifications. Given inputs

should not yield somewhat random outputs.

■ Test various features and functionalities to ensure they adhere to the

specified criteria. Given a scenario, our application should not produce

schedules with errors.

○ Robustness Testing:

■ Ensure our application can handle unexpected situations or inputs.

■ Test error-handling mechanisms and boundary cases to ensure the

application remains stable and reliable.

13

3. Project Plan

3.1 Project Management & Tracking Procedures

3.1.1 Project Management

Our team has adopted a more traditional waterfall approach to our project management.

Waterfall development was selected to allow us, as developers, greater flexibility between

project development and external facts, like school and work. Additionally, a waterfall approach

makes more sense in the scope of our project. Our project requirements are clear, detailed, and

unlikely to change. With concrete project requirements, this stability allows for comprehensive

planning and design before much of the core development has even begun.

3.1.2 Tracking Procedures

For tracking procedures, our team utilizes team-based communication and accountability in

addition to virtual tools for project development.

We use Snapchat and weekly team meetings to track progress between teammates for group

communication and relaying updates. We use full-team meetings (in-person and virtual) for

overall project updates and small-group meetings for specific development teams to focus on

end-specific issues, task decomposition, and discussions. For example, a frontend team meeting

would require the attendance of only frontend team members, and likewise, a backend meeting

only requires backend developers.

Additionally, we utilize virtual tools for tracking progress, such as Git for version control and

GitLab for source control. These tools allow our team to track individual progress as well as

maintain a clear understanding of what features have been implemented.

14

3.2 Task Decomposition

3.2.1 Primary Tasks

● Frontend Design - Website design and user interfaces.

● Backend Infrastructure - Backend code for databases.

● Artificial Intelligence - Used for schedule generation.

3.2.2 Task Relationship Overview

Figure 1.0: Task Relationship Overview

The above graphic visualizes our task decomposition through our three main application

components: frontend, backend, and artificial intelligence. The frontend will focus on website

and user interface design in our project. The backend will focus on website infrastructure and

database design. Artificial intelligence refers to using OpenAI API to generate schedules and

interact with user data.

While some development of these components may be conducted separately, each of these

three components will be integrated into our application for full functionality.

15

3.3 Project Proposed Milestones and Evaluation Criteria

Iowa State A.I. Schedule Companion v1.0 Completion - Deadline: March 29, 2024
This milestone agglomerates the development of all application components: frontend,

backend, and artificial intelligence. Throughout the first phase of development for our

application, each component will initially be developed independently until we reach the

integration phase.

Each component will undergo research and introductory development during independent

component development, specifically:

● Frontend: webpage design, creation, and modification.

● Backend: initial database infrastructure setup and code testing.

● Artificial Intelligence: A.I. research to understand its capabilities and how it will interact

with our application later in development.

Once we enter the integration phase, we will begin creating and testing interactions between

different components. First, we will test frontend access to the backend databases, i.e.)

accessing class information and storing user input in the database. Next, we will integrate

artificial intelligence into our web application for initial integration testing. This phase will be a

stepping stone before additional test runs and deployment is completed.

To evaluate this milestone, we will analyze our project's existing code and what is accessible and

possible when hosted locally.

Evaluation of this milestone entails:

● Baseline user interface design: Majority, if not all, web pages are created, and page

navigation is set up. Some webpages may undergo updates to theme design or layout,

but all pages and navigation should be working for v1.0.

○ Pages: Home, Login, Sign-Up, User Information, A.I. Scheduler, Previous

Schedules, and Class Preferences.

● Database accessibility: The frontend user interfaces can access and display database

information and store information from user input.

○ Data: user information, account information, and class preferences.

16

● Able to be locally hosted without errors: The website is able to be hosted locally on a

team member’s machine. When locally hosted, our front and backend code should

compile and run without errors.

Conduct User Test Run - Deadline: April 5, 2024
This milestone is the next step after completing Iowa State A.I. Schedule Companion v1.0 and

acts as the completion of our first significant trial of application testing. In this milestone, we

will test the primary function of our application: artificial intelligence schedule generation.

To evaluate this milestone, we will do a full run-through of the application’s functionalities,

namely the criteria listed below.

Evaluation of this milestone entails:

● User Login/Sign-Up: A student can log in and/or create an account with their email and

specified password.

● Ability to Enter User Info and Preferences: Once logged in, the user can answer prompts

on the “User Info” page to give specific answers regarding year classification, major, and

previous grades. This information will be stored in our database and visible to and

editable by the user. On the Class Preferences page, a student will be able to answer

additional questions regarding specific class preferences, i.e.) class time, location,

in-person vs. online, etc.

● Artificial Intelligence Schedule Generation: Once users have submitted their information

and preferences, they can access the “A.I. Scheduler” page. In this state, the A.I.

scheduler will be tested to create a schedule based on the user information and

preferences.

● Artificial Intelligence Schedule Storage: Once the A.I. has generated a schedule, this

schedule should be visible to the user on the webpage, saved in the database, and

accessible on the “Previous Schedules” page.

17

3.4 Project Timeline

3.4.1 Timeline Overview

Below is our project timeline for the first development semester. In our timeline, we divided our

project into 5 phases: planning, design, development, testing, and deployment. For this project,

each phase corresponds to three main components of our application: frontend, backend, and

artificial intelligence.

3.4.2 Timeline Table

Table 1.0: Timeline

18

Phase State Date End Date

Planning March 1, 2024 March 7, 2024

Design March 8, 2024 March 14, 2024

Development March 15, 2024 March 28, 2024

Testing March 29, 2024 April 4, 2024

Deployment April 5, 2024 April 11, 2024

3.4.3 Target Breakdown

Target 1: Service Building & Core Features - March 1, 2024 - March 14, 2024

● Backend - Developers begin database infrastructure setup, awaiting integration with

frontend user interfaces.

● Frontend - Core webpages are created, and user interface designs are updated to work

with backend infrastructure.

● Artificial Intelligence Service - Undergoes initial design, data modeling, and information

training.

Target 2: Implementation & Integration - March 15, 2024 - March 28, 2024

● Frontend and Backend Integration - Connect frontend and backend, and begin

integration testing.

○ Link backend databases to frontend user interfaces, namely allowing frontend to

access information already in the database, i.e.) class information.

○ Link frontend prompts to backend databases to store user information,

preferences, and eventually generated schedules.

● A.I. Integration - connect backend databases and frontend to artificial intelligence.

Target 3: Testing & Application Polishing - March 29, 2024 - April 4, 2024

● Web Application Analysis - Compare the A.I. Scheduler web application to existing Iowa

State University applications to verify our website is: similar to use, utilizes similar page

designs and themes, and allows Iowa State students easy access to schedule generation.

● Prototype Testing - Begin testing of all integrated features, i.e.) the frontend can access

backend databases, user information is correctly stored in the databases, and both

frontend and backend can access artificial intelligence for schedule generation.

● Confirmation of Schedule Integrity - Verify that generated test schedules are sufficient

without significant errors.

● Security Considerations - Ensure our application is secure regarding user accounts,

information, and personalized class schedules.

19

3.5 Risks and Mitigation

Unable to complete Milestone: Iowa State A.I. Schedule Companion v1.0

Completion - Deadline: March 29, 2024

Failure to achieve this milestone will result in our project being behind our preferred schedule,

requiring additional hours to be put in this semester and early next semester. However, at our

current pace, we will be on track for a complete and functional web application before the final

deadline next semester.

To mitigate this risk, we meet weekly to hold members accountable and discuss any issues that

may need to be addressed throughout the next development cycle. Additionally, since our team

has been cohesively in this project's development and research phase, we have already made

great strides to stay caught up before our final deadline.

20

3.6 Personnel Effort Requirements
Below is Table 3.0: Personnel Effort Requirements, which lists various tasks necessary to

complete our project and the estimated amount of time put forth and yet to be completed.

Task # Task Description Projected Number of Hours to
Complete

1 Initial repository
setup

Implement database and frontend
resources into GitHub and AWS
setup for hosting.

12 hours

2 Initial Backend

Database Set up

Creation of MySQL database and

group discussion regarding

database design.

8 hours

3 A.I. Research Introductory research conducted

regarding OpenAI capabilities.

8 hours

4 Complete initial
frontend web
application design

For our website, we estimate there
to be approximately 7-10 pages;
each of these pages will need to be
designed by a member of the
frontend team.

35 hours split among the frontend
development team
*I estimate about 5 hours/page,
as each page will have an initial
design plan and be modified
during implementation.

5 Frontend & backend
integration

Implement backend accessibility
logic in the frontend code. Verify
front-end connection to databases
via storing and accessing.

12 hours

6 A.I. Integration Implement artificial intelligence
logic into the frontend and give it
access to the backend database for
schedule storage.

8 hours

7 Version 1.0 User
Testing (Local)

Conduct user test run locally of our
web application; verify frontend
can access backend databases and
that A.I. is accessible and can
generate schedules.

2 hours

21

8 Continued Frontend
Design Updates

Based on the testing results, update
webpages as needed to improve:
ease of use, readability, and
functionality.

12 hours

9 Continued Backend
Updates

Based on the testing results, modify
backend databases as needed to
work efficiently.

12 hours

10 Web Application
Deployment

After successful local testing, we
will begin the online deployment of
our website for additional testing
and development.

8 hours

11 Consequent Testing Based on frontend and backend
changes, conduct another user test
and obtain feedback from test
users.

2 hours

12 Final frontend web
application
modifications

Based on later web application
testing, clean up user interfaces
and forms.

6 hours

13 Final backend
database code
modifications

Based on later application testing,
modify database infrastructure as
needed.

6 hours

14 Final Complete
Application Testing

Confirm that all application
functionalities are working as best
as possible and that the application
is easy to use.

1 hour

Table 2.0: Personnel Effort Requirements

In the above table, various efforts are described regarding our project. Most project tasks are

divided into 3 categories: frontend, backend, and artificial intelligence. Additionally, there is a

focus on initial design and development, integration, testing, and web application deployment.

The tasks listed are the primary tasks that must be executed for completion of our project.

22

3.7 Other Resource Requirements

ETG Correspondence for Backend Resources

Some additional resource requirements are: access to Amazon Web Services (AWS), OpenAI,

and GitLab for this project. In the initial construction phase of this project, we faced some issues

regarding permissions in GitLab during setup in GitLab when trying to connect AWS and OpenAI

services.

23

4. Design

4.1 Design Exploration

4.1.1 Broader Context

Our application is designed for Iowa State University students and advisors to generate class

schedules more efficiently, accurately, and easily. Our project addresses the pending needs of

students to have an efficient way to generate schedule options and add additional functionality

to consider user preferences. For more information on user preferences, please see section

2.1.1 Functional Requirements - Frontend. Below, more contextual considerations are listed in

Table 3.0: Broader Context Considerations.

Area Description Examples

Public health,
safety, and
welfare

Our application is intended to
positively impact users, primarily
Iowa State University affiliated
students and advisors, as addressed
in section 1.2 Intended Users. The
impact of our application is to
improve the efficiency and accuracy
of schedule generation for our
intended users, overall increasing
user well-being. Indirectly, there will
be little to no impact on external
public welfare.

- Reducing the workload and time
students and advisors must
manually spend creating
schedules.

- Increasing the quality of
generated schedules by
considering more specific user
needs.

- Reducing frustration when
narrowing down schedule options
by providing more specific,
user-oriented options.

Environmental Overall, this web application will be
sustainable and have minimal
environmental impact, primarily due
to the fact that this application is
Iowa State University-oriented
rather than extending to various
universities across the United States.
This application will not require
manufacturing or extensive use of
environmental resources.

- The goal of this application is to
utilize as few resources as
possible, but the application will
ultimately require hosting
functionalities for accessibility
and database storage.

24

Economic Overall, this project will have some
economic costs for our team/Iowa
State University but will be free to
users. Costs for our application
include: tokens spent training A.I.
with user information and hosting
our application on a server.

- No cost for users to utilize this
web application.
- Some cost for utilizing A.I. to
generate schedule options.
- Additional cost for hosting and
maintanence of web application.

Table 3.0: Broader Context Considerations.

25

4.1.2 Prior Work/Solutions

Iowa State University Schedule Planner

The previous solution for class schedule generation was the Iowa State University Schedule

Planner [4]. This tool allows students to directly access class information from Iowa State,

ensuring accuracy of section times and course availability. In this application, schedules can be

automatically generated based on the courses selected manually by the user, providing

numerous schedule possibilities based on various class sections. The below figure is a

screenshot of the schedule planner.

Figure 3.0: Iowa State Schedule of Classes Schedule Planner.

26

Pros:

● Users can directly access Iowa State class information

● Can accurately generate schedules based on selected courses manually added by the

user

Cons:

● This application will be discontinued by Fall of 2024

● Students must manually weed through generated schedules to meet their preferences

● Users must manually input specific course requirements for the given semester

● Cannot account for user preferences

Our solution, A.I. Schedule Companion, is important for two primary reasons:

1.) The current online schedule planner will be discontinued following Iowa State’s

switch to Workday, so there will be a need for a new application.

2.) Our application will go beyond the previous site’s functionalities.

A.I. Schedule Companion will utilize a similar foundation of taking Iowa State class information,

but our solution differs in schedule generation. In our solution, user information and artificial

intelligence will be used to create user-specific schedules that cater to user preferences,

reducing the hassle of manually sorting through generated schedule options.

27

Workday

As of Spring 2024, Workday is the new system that Iowa State utilizes for student information

and course scheduling [5]. Accordingly, Workday has a system to create schedules; this system

allows students to manually select courses and add them to a “Saved Schedule” which can later

be used to register for courses. In the figure below, a screenshot of Workday’s schedule

creation system is shown [6].

Figure 3.1:Workday Course Adding.

28

In Figure 3.1, on the left side there are various search options that can be used to narrow down

classes via locations, instructional formats, delivery, and more. These are options allow students

to toggle which types of courses they are to see, and then can manually add them to a “Saved

Schedule” accordingly.

Pros:

● Direct access to Iowa State class information

● Can detect course time conflicts and reports them to the user

Cons:

● User interfaces aren’t very intuitive

● Cannot account for user preferences

● Users must manually select courses and determine which sections to take (to prevent

conflicts)

Overall, the “Saved Schedules” within Workday are helpful for class registration, but ultimately

there isn’t a robust means of generating schedules that cater to student preferences. In A.I.

Schedule Companion, clean, easy-to-follow user interfaces will be utilized to help make the

schedule generation process seamless.

4.1.3 Technical Complexity

Our project, A.I. Schedule Companion, is made up of 3 primary components- frontend user

interfaces, backend databases, and artificial intelligence. For a more detailed overview of the

project structure and components, please refer to section 4.3 Proposed Design.

Frontend

On the frontend, development efforts are being put forth in designing sleek, easy-to-follow user

interfaces that provide clear guidance for users and display relevant information. This

development is being conducted Next.JS and utilizes library components from Material UI (MUI)

and React. Even with these tools, frontend development has provided a moderate level of

difficulty, requiring developers to gain new skills and insights when using resources they have

not previously, and when working to cater our designs to students.

The frontend focuses heavily on

29

Backend

On the backend, development is focused on providing efficient, secure storage of user

information and accessibility of Iowa State class information. The backend is utilizing a

PostgreSQL database to store student account information, preferences, and created schedules.

Backend development requires connection to the frontend to obtain user information as well as

allow the frontend to display stored preferences, information, and schedules. The backend must

also be connected to the artificial intelligence such that when the A.I. generates a schedule, the

schedule can be stored by the user.

Artificial Intelligence

Another major component of this project is artificial intelligence. A.I. is the driving force behind

schedule generation in this project. Where frontend is designed to make the schedule creation

process easier, A.I. does the heavy-lifting of actually generating schedules that caters to users’

class preferences, current user information, and course availability. Utilizing A.I. makes the

process easier for the user, but behind the scenes, the A.I. must be trained using Iowa State

course information and 4-year plans for various majors. The A.I. component must be able to

effectively build accurate schedules and allow functionality such that a user can modify their

preferences and course criteria.

Integration & Hosting

A significant piece of this project is integration and hosting. In order to combine the

aforementioned project components above, all components must be integrated and function

cohesively. Independently each component may be function, but in order for this project to be

effective, all components must be integrated and our web application must be deployed online

for user access. Integration of this project is primarily done utilizing Amazon Web Services

(AWS) tools and GitHub for Continuous Integration/Continuous Deployment (CI/CD). As our

project is a web application designed to make students’ lives easier, our website must be hosted

reliably and securely so that students can generate schedules.

30

Summary

Overall, the project complexity is driven by the integration of various components that must all

work together in order to effectively assist students in schedule generation. This project is

intended to replace and improve upon what Iowa State Schedule Planner was (please refer to

section 4.1.2 Prior Work/Solutions for more information regarding the schedule planner.) In

order to be an effective solution, all components of this web application must be fully

functioning and integrated, and tested to allow for effective schedule generation. Our solution

will allow students an easier time generating schedules by utilizing sleek user interfaces, robust

database handling, reliable hosting, and trained artificial intelligence.

4.2 Design Exploration

4.2.1 Design Decisions

Initial Set Up - Infrastructure and Resources Selected for Development

Our solution's first major design decision was regarding what tools and resources would be

utilized for development, infrastructure, and hosting. Our first team meeting discussed the

various APIs and resources required for frontend and backend development, artificial

intelligence access, and website hosting. When deciding which resources to use, we considered:

familiarity, available documentation, integration capabilities, and cost.

To view the specific resources selected from this decision, please see section 2.1.2 Resource

Requirements.

User-Base

In the early stages of development for this solution, we had to identify the user scope of our

project.

Our primary question was:

● Do we want to cater only to Iowa State Students, or do we want to allow students from

other universities to use this application?

31

Regarding the user base for this project, we decided to limit our project to Iowa State University

students because: we are most familiar with the Iowa State student base, we have flexibility in

accessing Iowa State University information and resources, and we want to keep the capabilities

of our application reasonable, considering available hosting and database constraints.

Through our own Iowa State student experiences, our team is aware of the schedule generation

issues and needs of other students, specifically at Iowa State. As our team is a part of the user

base, we can reach out to other students for specific feedback, allowing Iowa State

University-specific schedule generation and accommodations to provide the best possible user

experience.

Regarding resources, we will be able to more easily access information related to Iowa State

University, like class information, current registration capabilities, Iowa State application

designs, etc. Additionally, for web application assistance and funding, we will utilize the

Electronics and Technology Group (ETG) for assistance throughout this project.

Lastly, another big consideration when making this decision was the capabilities and resources

needed for our application. Broadening our web application to more universities would be

cumbersome for our database, hosting, and the artificial intelligence training process. If our

application were to be utilized by various other universities, we would need extensive resources

to maintain our database, train our artificial intelligence, and allow many users to access the

application. Regarding resource consumption, limiting this project to Iowa State University

allows us to generate ISU-specific schedules without exceeding our application’s baseline

capabilities.

Application Features

For our project’s scope, we also had to consider how many features we wanted to include in our

web application. Namely, we considered: Do we want to provide additional features, beyond

schedule generation?

Ultimately, for this decision, we opted to limit our project to artificial intelligence schedule

generation and schedule storage. For this decision, we considered the timeline for our project-

additional, unnecessary features would considerably increase the workload. Another

consideration was that if we included too many additional features, our application could be

incomplete and jumbled with unnecessary capabilities.

32

By reducing the scope of our application’s features to schedule generation, we will be able to

focus more time on the quality of our application’s primary goal rather than the quantity of

additional features.

4.2.2 Ideation

Design Decision

One of our main design decisions was “simplicity in getting schedules.” From that, we were able

to form exactly five options for solving this decision: clean user interfaces, clear, concise user

input, ease of understanding schedule, compare/contrast with known classes, and additional

features. The last option would be better implemented when the project base is completed, but

it was an option nonetheless.

Clean User Interfaces

User interface, or UI for short, is the point where man and machine communicate with each

other. It is difficult to say what is not a UI when dealing with computers; every icon is one, web

browsers are one, and even the computer mouse is UI. If building a project involving computers

and applications that actually work is the main goal of a team, then creating a legible UI is the

second most important. The reason for this is because it is the language barrier. In order to

properly tell your users where to go, you have to illustrate through the UI. Unlike yellow-paint

design*, the UI should not baby the user in any way on where to go. Instead, it should make all,

if not most, of its functions available from the screen they start on. They can be hidden in

separate tabs such as the Store tab having “for you” and “special” options underneath it. With

our design, we devised some ideas on how to do this properly.

● Utilize page organization (i.e., drawers/side tabs for navigation)

○ This is precisely the same as the Store example from the prior paragraph.

● Allow scrolling on pages or have it easy to store more information on the same page

○ The idea is to eliminate the number of pages one can go to, thus allowing them

to wait less time to traverse to a page they think might have the answer they are

searching for.

● Create simple prompts that give clear spaces for user input/answers

○ If the user has to input something, what we are asking/prompting them to do

should be clear.

33

○ A pseudo-example of bad user input would be having a prompt for “Name” and

then “Last Name.” When “Name” is present, most people assume that it means

their first and last name, but the website meant for only the first name.

● Reduce page clutter - only have the necessary information

○ If the information presented before someone only has fifty percent of what they

want/need, eliminate the other fifty as it is distracting.

○ This is no excuse for poor grammar or cavespeak, though. Much like the

presentations, use bullet points and sentences to illustrate the point.

● Use asset color scheme to avoid distracting web pages

○ An overuse of colors or misuse of them can cause the eyes to struggle to read or

comprehend the page. It is good to remember that humans were not made to

look at electronic screens, so if they should do so, they should look at something

pleasant or at least not damning to the eyes.

Clean User Input

For websites/applications that demand user input, the most important aspect of this is being

clear with your wording. Not being specific in even a single word can cause confusion, including

the incredibly common “a” and “the” as both preface different uses of the singular tense. The

question “point at a square” vs. “point at the square” differs in the fact that with “a”, it appears

there is more than one square, and they are tasked with only pointing at one. Meanwhile, “the”

indicates there is only one in this picture. With that example aside, we had further ideas to

emphasize this point.

● Edit button - allows users to change their input as needed

○ This option is if the user clicks to the next page when answering prompts and

realizes they got incorrect information beforehand.

● Simple user prompts for initial input

○ No paragraph-based questions should be given to users for questioning, just

simple sentences. That is acceptable if an example is needed to illustrate what is

being appropriately asked.

● Avoid open-ended questions

○ With simplicity, it should also be specific. Look back to the square example, for

instance.

● Allow AI to ask specific follow-up questions to clarify schedule criteria

34

○ This would be given to the user if some of their information conflicts which then

confuses the AI.

Ease of Understanding Schedules

As with most things, schedules are best understood via visuals. However, as with UI, schedules

can get confusing if not properly explained. The greatest aspect of a schedule is how it can be

tailored to someone personally which is usually just caused by them understanding their own

schedules. With our program, we hope for that personalization as it will encourage students to

use it more often if they can relate. To ensure this happens, we had some ideas to help.

● Create a visual/chart of generated schedule options

○ Instead of visuals of just selected classes, it would show the schedules with all of

your personalized options.

○ To avoid the clutter of time slots, it would most likely be organized to have the

AI’s highest accuracy-based classes appear in front of the others (which are

desaturated until specified by the user, which then desaturates the rest so only

one can be seen).

● Provide simple text-based generated schedule

○ This option would be best used if the user was in a hurry, a simple text document

that shows the assumed classes they want to take.

○ It is stated in the sample that it is “not as helpful.”

● Provide an image of the ISU 4-year plan and the generated semester schedule

○ This helps the users and the AI understand the schedule they are/will be given.

Essentially, a template for both parties.

● Ability to indicate which classes count for which requirement (i.e., tech elective,

computation elective)

○ This would help the user understand why that class was picked over other

options, which would also aid them in understanding their own audit.

Compare/Contrast Known Classes

The last relevant option refers to the ability of the AI to look at every single ISU class. With a lot

of information, it can correctly assign person X with their preferred and required classes. There

are some ideas to help explain further.

● Take into account classes previously vs ones still required to take.

○ This would take in the audit of the student to properly give them what they still

need to take instead of accidentally recommending already completed courses.

● Compare required classes for students with known and available classes.

35

○ When somebody activates the scheduler, it will create the accommodated

schedule and discard any full classes afterward. It would also state that X class

was full and thus not on the options.

*: “Yellow-paint design” refers to illustrating where to go in a video game via yellow paint. This is done to ensure a

player does not get stuck in a location. Although seemingly harmless design, it has been overused in that even

easy-to-see paths have that paint which is seen as “babying” the player.

4.2.3 Decision-Making & Trade-Offs

For clean user interfaces, the main pro would be that the website itself would look clean and

well-made. This would ensure the user traverses the correct site to get what they want. The

only con would be the difficulty of making the perfect website. Since website design could be

classified as art, only a few engineers have experience in that field and thus would struggle.

With clean user input, users would always be clear when prompted to type something in. They

would be able to understand what is being asked and why clearly. However, the English

language is a difficult line to tread upon. Unless one has spent days writing and understanding

how to make proper questions, a simple slip in the crack could cause confusion.

Given we are working on making a scheduler, an important aspect would be allowing everyone

to understand the schedules we are creating. Doing so would encourage them to use our

website more as it is easy to understand. Unlike the other options, there is no real downside

other than making it too simple for somebody. The idea is to have it personalized; having it too

simple can drain the soul.

Finally, with the AI looking at every class, it can easily come to quick and concise conclusions on

making the perfect schedule. It can look at which classes are needed for somebody’s education,

which classes they want, and which classes are full to make a great schedule for them. The issue

lies in giving the AI all the data and hoping it can accurately make a schedule to suit their needs.

With such pros and cons, we are doing all the options. That’s because each option feeds into

each other, and only focusing on one would reduce the quality of the product. Along the way,

we will focus on one at a time, but we will still focus on all of them.

36

4.3 Proposed Design

4.3.1 Overview

Figure 4.0: Design Overview.

Per Figure 3.0 shown above, our web application can be broken down into 3 primary pieces,

with two components accessing an online resource (Iowa State class information online.)

In the above graphic, it is essential to note that users will only directly interact with the “Web

Application” node, which visually all users will be able to interact with. The “Artificial

Intelligence” and “SQL Database” nodes will be behind the scenes, allowing for efficient

schedule generation or storage of user input into our frontend application.

Frontend (User-side)

In our project, users will access a website that will allow them to sign in using their Iowa State

credentials and then allow them to enter preferences and requirements for their class

schedules. Once the information has been input, users will be able to access the A.I. Scheduler

page, which will allow them to generate schedules based on their input.

37

Backend

On the backend, our use of OpenAI API will allow us to utilize artificial intelligence to generate

schedules based on the user information stored in our database and store the generated

schedules in the database to be presented on the frontend.

External Resources

For AI training purposes and ease of access, our database and artificial intelligence will access

Iowa State websites for class information. For our artificial intelligence, the Iowa State Online

class information will be used for training, as the AI will need a basis for how 4-year plans for

various majors work and what classes are available and when. For our database, more specific

information may be stored regarding classes.

4.3.2 Detailed Design & Visuals

4.3.2.1 Detailed Overview

Figure 4.1: Detailed Design Overview.

38

Frontend Overview

Figure 4.2: Schedule Maker Page.

In Figure 4.1, an example AI Scheduler webpage is drawn. This drawing is a snippet from Figure

4.0, which indicates its relation to other components of our application. The scheduler page

allows users to answer prompts so that artificial intelligence can generate a more specific

schedule for their needs. This webpage allows user information to be stored in backend

databases so the AI can access it later, if necessary.

39

Figure 4.3: Frontend Webpage and Contents Overview.

In the figure above, the general webpage navigation is indicated. Circles with labels represent

webpages: Login/sign-up, home, user information, class preferences, previous schedules, and

the AI Scheduler page. In the rounded rectangles, the various information accessible by each

webpage is indicated.

40

Backend Overview

Figure 4.4: Backend Overview (PostgreSQL Tables).

For our backend infrastructure, we have opted to utilize Terraform scripts to streamline the

provisioning and management of our PostgreSQL tables. These tables will be the backbone for

storing correlated student information, which is essential for user registration within our

application. In addition to PostgreSQL, we'll leverage the power of OpenAI's API to enhance

functionalities within our platform, enabling advanced features and intelligent interactions. To

accommodate the storage of multimedia assets, such as images, we will employ Amazon S3,

providing scalable and durable object storage capabilities. Complementing these services, we'll

also incorporate Amazon EC2 instances to support the computational requirements of our

application, ensuring reliable and efficient performance across all aspects of our backend

architecture. Through this strategic selection of technologies and services, we aim to build a

robust and scalable backend infrastructure that forms the foundation for a seamless and

feature-rich user experience.

41

Figure 4.5: Backend Overview (implementation of EC2, OpenAI API and S3).

Figure 4.4 presents our initial implementation showcasing the connectivity between OpenAI,

Amazon S3, and EC2 instances within our backend architecture. This diagram illustrates the

fundamental setup for our backend tables, where PostgreSQL serves as the primary database

for storing student information essential for user registration. OpenAI's API integration enriches

our application's capabilities, providing advanced functionalities and intelligent interactions for

enhanced user experiences. Additionally, Amazon S3 facilitates seamless storage of multimedia

assets, such as images, ensuring scalability and durability. Complementing these services, EC2

instances are strategically deployed to meet computational demands, ensuring optimal

performance and reliability across our backend infrastructure.

42

4.3.3 Functionality

Figure 5.0: AI Scheduler Sign-In page.

Our design is intended to be operated by users on the frontend side, via web application access.

Users who access our website will be prompted to log in or sign up. Once the user is signed in,

they’ll be presented with a homepage.

43

Figure 5.1: AI Scheduler page.

If the user still needs to answer the class preferences and user information prompts, they will be

prompted to provide their information. This is to better clarify to the AI where to start looking,

which will cause it to give even more accurate information.

After entering the user information, they will be brought to the pages that ask questions about

their preferences. The questions will look similar, albeit in the last picture’s format. After

answering all the questions, the AI will start creating the schedule, which might take a bit. When

created, the user will be prompted to a different page showing the results. This results page

shows the schedule that the AI came up with. At this point, the user can save the schedule,

which will input it into Workday, or tweak it a little if the results aren’t quite what they wanted.

44

4.3.4 Areas of Concern & Development

Our proposed solution will satisfy the requirements: to create an easy, effective, and reliable

schedule-generation experience for users. In the scope of our project, A.I. Schedule Companion

is inherently designed to cater to users preferences, and that focus is reflected not only in the

class preferences for schedule generation, but also when designing user interfaces; this

application is intended to be for Iowa State students and advisors by Iowa State students. Given

our background in the class scheduling process, we are able to use this experience to help make

the schedule creation process more efficient and refined, reducing the manual effort required

by users.

One of the primary concerns as of now is utilizing the Iowa State GitLab for project efforts. Since

this project is a web application, we must host the site so that it is accessible on the internet. In

order to have the correct permissions for hosting via Amazon Web Services (AWS), our team has

had to create a separate GitHub for development efforts. The issue with this stems from ETG

funding being distributed to the Iowa State-affilied GitLab, and that GitLab account is unable to

provide us with the permissions required for hosting. In order to mediate this issue, our team

has been coordinating with ETG to find a work around so that our site may be hosted and also

receive proper funding.

45

4.3 Technology Considerations

4.3.1 Frontend

● Next.JS

○ Strengths: Next.js offers server-side rendering, which is excellent for SEO and

initial page load performance. It supports static site generation, dynamic routing,

and has a great developer experience with hot reloading.

○ Weaknesses: Next.js applications can be heavier than single-page applications

due to server-side rendering and the initial download size. It also locks you into

its ecosystem, which can limit flexibility in some scenarios.

○ Trade-offs: Choosing Next.js means optimizing for performance and SEO at the

potential cost of flexibility regarding infrastructure and deployment options.

○ Alternatives: React with Create React App for more flexibility, Gatsby for static

site generation focused projects.

● Material-UI (MUI)

○ Strengths:MUI provides a robust set of React components that follow Material

Design principles, allowing for the quick development of attractive, consistent

UIs.

○ Weaknesses: The comprehensive nature of MUI can lead to bloated bundle sizes

if not properly tree-shaken. Some customization may require overriding styles,

which can get complex.

○ Trade-offs:MUI accelerates development with a ready-made component library

at the expense of potentially larger bundle sizes and less customization flexibility.

○ Alternatives: Tailwind CSS for utility-first CSS, allowing for more custom design

with fewer predefined components, and Bootstrap for a different set of design

conventions.

46

4.3.2 Backend

● PostgreSQL

○ Strengths: PostgreSQL is an advanced, open-source relational database with

strong ACID compliance, extensive features like complex queries, JSON support,

and reliability.

○ Weaknesses: It can have a steeper learning curve for unfamiliar SQL users.

Management and scaling can become complex with large datasets.

○ Trade-offs: Opting for PostgreSQL means gaining a powerful, reliable database

system at the cost of potentially complex management and optimization

requirements.

○ Alternatives:MySQL for a more widely used SQL option with a larger community,

MongoDB for a NoSQL option that might scale more easily with unstructured

data.

● Terraform

○ Strengths: Terraform allows you to define infrastructure as code, making it easy

to create, manage, and update infrastructure resources across multiple service

providers with a consistent workflow.

○ Weaknesses: The learning curve can be steep. Debugging errors in Terraform

scripts can be challenging due to the abstraction layer over cloud resources.

○ Trade-offs: Terraform provides infrastructure management consistency and

efficiency at the cost of initial complexity and learning.

○ Alternatives: AWS CloudFormation for closer integration with AWS services,

Ansible for more general IT automation beyond infrastructure as code.

4.3.3 Cloud & Hosting

● AWS EC2

○ Strengths: EC2 provides scalable computing capacity in the AWS cloud, allowing

you to develop and deploy applications rapidly without hardware constraints.

○ Weaknesses: Cost management can be complex, and performance optimization

requires understanding the right instance types for your workload.

○ Trade-offs: EC2 offers flexibility and scalability for your computing needs at the

potential cost of complex cost and performance management.

47

○ Alternatives: Google Cloud Compute Engine for a different cloud provider option,

AWS Lambda for serverless computing that can scale automatically.

● Planned Cloud Database Storages (MongoDB Atlas, RDS, DynamoDB)

○ Strengths:MongoDB Atlas offers flexibility with unstructured data. RDS provides

ease of use with relational databases. DynamoDB’s gives seamless scalability and

performance.

○ Each of these databases offers unique strengths, and the choice would depend

on specific use cases, data structures, and scalability needs.

4.3.4 AI Integration

● OpenAI API

○ Strengths: Provides access to powerful AI models for various tasks, including text

generation, analysis, and more, allowing for innovative features in your

application.

○ Weaknesses: Dependency on an external service for core functionality can

introduce cost, latency, and availability risks.

○ Trade-offs: Leveraging the OpenAI API enables cutting-edge AI features at the

expense of increased operational complexity and reliance on a third-party

service.

○ Alternatives: Developing in-house AI capabilities (requires significant investment

in resources and expertise), using other AI APIs like Google Cloud AI for different

integration options and capabilities.

4.4 Design Analysis
Thus far, the design of our project has been working well for our team. We have been building

out each core section of our application independently. Our front end, back end, and AI Service

are not functioning in tandem. This will likely be one of the next steps in our project’s

development, as the front end has been looking for the ability to make REST API calls for a little

while now. Similarly, the AI Service does not have a path forward that does not depend on the

actions of a user and the tools provided to them. The AI Service can have basic interactions with

trained content given a POST request; however, having a selected training set, having

user-submitted documents, etc., will require the additional backend infrastructure. Thus,

arguably, our backend is the most crucial part of our design that needs development. Until then,

we cannot be sure if all systems and their current implementations are viable for the final

product.

48

5. Testing
Testing is integral to ensuring the reliability, functionality, and security of our web app designed

to assist Iowa State University students in building their class schedules and more. Our testing

plan is tailored specifically to our project, addressing its unique requirements, interfaces, and

potential challenges.

5. Unit Testing
Unit testing focuses on testing individual components or units of our system. In our case, units

include various modules such as the chat interface, schedule generation algorithm, user

authentication, and database operations. Each unit will be tested in isolation to ensure its

functionality meets the specified requirements. We will employ testing frameworks like Jest for

JavaScript-based components.

5.2 Interface Testing
Interface testing involves testing the interactions between different units or components of our

system. For example, we will test the integration between the chat interface and the schedule

generation algorithm to ensure smooth communication and data exchange. Tools like Selenium

WebDriver will be used for automated interface testing, simulating user interactions and

validating responses.

5.3 Integration Testing
Integration testing focuses on verifying the interactions and data flow between interconnected

modules or subsystems. Critical integration paths in our design include the communication

between the front-end interface, back-end server, and database. We will conduct integration

tests to validate the functionality of these paths, ensuring seamless operation of the entire

system. Postman will be used for API testing, while Docker Compose will facilitate testing in

containerized environments.

5.4 System Testing
System testing involves testing the system as a whole to validate its compliance with the

specified requirements. This includes executing a comprehensive set of unit tests, interface

tests, and integration tests. Our system testing strategy will be closely tied to the functional and

non-functional requirements outlined in the project scope. Continuous integration and

49

deployment (CI/CD) pipelines, such as GitLab CI, will automate the execution of tests and

ensure consistent performance across different environments.

5.5 Regression Testing
Regression testing ensures that new additions or modifications do not introduce defects or

regressions in existing functionality. We will maintain a suite of regression tests covering critical

features such as class schedule generation, user authentication, and data persistence. These

tests will be driven by requirements and executed automatically as part of our CI/CD pipeline.

Tools like Git version control and GitHub Actions will aid in managing and running regression

tests efficiently.

5.6 Acceptance Testing
Acceptance testing involves validating whether the design requirements, both functional and

non-functional, are met from the end user's perspective. We will collaborate closely with our

client, involving them in acceptance testing to gather feedback and ensure alignment with their

expectations. User acceptance testing (UAT) sessions will be conducted, where students interact

with the system to evaluate its usability, performance, and overall satisfaction.

5.7 Security Testing
While security testing is not currently applicable to our project, it will become crucial in future

phases when handling sensitive information and deploying the application on cloud platforms

like Amazon Web Services (AWS). During the implementation phase, we will perform security

assessments and penetration testing to identify and mitigate potential vulnerabilities. Tools like

OWASP ZAP and Burp Suite will be utilized for security testing, ensuring user data's

confidentiality, integrity, and availability.

5.8 Results
Once testing is complete, the results will demonstrate how well our design aligns with the

specified requirements and standards. Through a meticulous process encompassing unit,

interface, integration, system, regression, and acceptance testing, we aim to validate our web

application's functionality, performance, and security.

50

To provide concrete evidence of our testing efforts, we will employ various metrics and

techniques, including:

1) Code Coverage Analysis: We will measure the percentage of code executed during

testing to ensure that all parts of the codebase are adequately exercised- tools like

Istanbul for JavaScript or JaCoCo.

2) Test Case Documentation: Each test case, including its purpose, inputs, expected

outcomes, and actual results, will be meticulously documented. This documentation will

serve as a reference for future testing cycles and provide insight into the thoroughness

of our testing process.

3) Test Automation Reports: For automated tests, we will generate detailed reports

outlining test execution results, including pass/fail statuses, execution times, and any

encountered errors or exceptions. These reports will facilitate quick identification of

issues and enable timely remediation.

4) Performance Metrics: In addition to functional testing, we will assess the performance

of our web application under various load conditions. Metrics such as response times,

throughput, and resource utilization will be monitored and analyzed to ensure optimal

performance and scalability.

5) Security Assessment Findings: If applicable, security assessment and penetration testing

results will be documented, highlighting any identified vulnerabilities or weaknesses in

our application's security posture. Remediation plans will be developed to address these

findings and enhance the application's resilience against cyber threats. This section

primarily relates to Amazon Web Services and hosting, but this issue is not as

problematic due to the low amount of personal information stored within our

databases.

We aim to provide transparent and verifiable evidence of our testing functionality by leveraging

these techniques and metrics. This comprehensive approach will instill confidence in the

reliability and robustness of our web application, ultimately benefiting the Iowa State University

student community.

6. Implementation
As we move from development to deployment, our attention turns to improving, testing, and

finally making the Iowa State A.I. Schedule Companion available to all students. This important

51

phase includes many important jobs, such as making the design more user-centered, testing it

thoroughly, and making the big switch to public hosting. As we bring together new technologies

and user needs, our goal is not only to provide a smooth schedule solution but also to build a

flexible platform that gives students the tools they need to manage their schoolwork.

6.1 Hosting and Deployment:
● Procure hosting services from a reliable provider capable of handling anticipated user

traffic.

● Configure servers and databases for deployment, ensuring scalability and reliability.

● Deploy the updated version of the Iowa State A.I. Schedule Companion to the public

hosting environment.

6.2 Testing and Quality Assurance:
● Organize testing groups consisting of students from various academic backgrounds to

gather diverse feedback.

● Conduct iterative testing cycles to identify and address any remaining issues or bugs.

● Fine-tune the application based on feedback from testing groups to ensure usability and

effectiveness.

6.3 Security and Privacy Enhancements:
● Conduct a security audit to identify potential vulnerabilities in the application.

● Implement encryption mechanisms to secure user data stored in the database.

● Update privacy policies and user agreements to comply with data protection regulations.

6.4 Design Refinement:
● Review user feedback from the test run and identify areas for improvement in the UI/UX

design.

● Refine web page layouts, color schemes, and navigation to enhance user experience.

● Update design documentation to reflect any changes.

6.5 Backend Enhancements:
● Address any performance issues or bugs identified during the test run.

● Optimize database queries and backend code for improved efficiency.

52

● Implement additional features requested by users or stakeholders, such as class search

functionality or schedule sharing options.

6.6 Public Release:
● Announce the public availability of the application to the student body through various

channels, such as university newsletters, social media, and campus events.

● Provide instructions for accessing and using the application, including account creation

and schedule generation.

● Monitor user adoption and address any issues or concerns raised by early adopters.

6.7 Post-Release Support and Monitoring:
● Offer ongoing technical support to users and promptly address any reported issues or

inquiries.

● Monitor application performance and server uptime to ensure a seamless user

experience.

● Gather feedback from users through surveys or feedback forms to inform future updates

and enhancements.

53

7. Professional Responsibility

7.1 Areas of Responsibility

Area of Professional
Responsibility

NSPE Code of Ethics ACM Code of Ethics

1. Public Safety,
Health, and Welfare

Engineers shall hold paramount
the safety, health, and welfare
of the public.

1.1 Contribute to society and to
human well-being, acknowledging
that all people are stakeholders in
computing.

2. Competence and
Accountability

Engineers shall perform services
only in areas of their
competence.

2.2 Maintain high standards of
professional competence,
conduct, and ethical practice.

3. Honesty, Integrity,
Fairness

Engineers shall act with honesty,
integrity, and fairness.

1.3 Be honest and trustworthy.

4. Conflict of
Interest

Engineers shall act in
professional matters for each
employer or client as faithful
agents or trustees, and shall
avoid conflicts of interest.

1.3 Avoid deception and be honest
and trustworthy.

5. Confidentiality
and Proprietary
Information

Engineers shall not disclose,
without consent, confidential
information concerning the
business affairs or technical
processes of any present or
former client or employer, or
public body on which they
serve.

1.8 Honor confidentiality and
privacy.

6. Competence and
Quality of Work

Engineers shall strive to serve
the public interest and to
improve their competence and
the quality of their work.

2.2 Maintain high standards of
professional competence,
conduct, and ethical practice.

54

7. Professional
Development

Engineers shall continue their
professional development
throughout their careers and
should keep current in their
specialty fields by engaging in
professional practice,
participating in continuing
education courses, reading in
technical literature, and
attending professional meetings
and seminars.

2.2 Maintain high standards of
professional competence,
conduct, and ethical practice.

Table 4.0: Area of Responsibility.

The ACM Code emphasizes contributing to society and human well-being, recognizing that all

people are stakeholders in computing, while the NSPE Code focuses explicitly on the safety,

health, and welfare of the public.

Both codes stress competence, but the ACM Code also includes conduct and ethical practice,

whereas the NSPE Code focuses on performing services only in competence areas.

Both codes emphasize honesty and integrity, but the NSPE Code also includes fairness, while the

ACM Code focuses on trustworthiness.

The ACM Code emphasizes avoiding deception and being honest and trustworthy, while the

NSPE Code specifically mentions avoiding conflicts of interest and acting as faithful agents or

trustees.

Both codes address confidentiality, but the NSPE Code also mentions proprietary information

and consent, while the ACM Code focuses on honoring privacy.

The ACM Code stresses maintaining high standards of competence, conduct, and ethical

practice, while the NSPE Code emphasizes serving the public interest and improving

competence and quality of work.

Both codes emphasize continuing professional development, but the NSPE Code provides

specific examples, such as engaging in professional practice, participating in continuing

55

education courses, reading technical literature, and attending professional meetings and

seminars.

7.2 Project-Specific Professional Responsibility Areas

1) Public Safety, Health, and Welfare

● Application: The AI Class Scheduler should ensure fair and non-discriminatory schedules

for all students, contributing to their well-being.

● Performance:Medium - The team should develop an algorithm prioritizing fairness and

equity.

2) Competence and Accountability

● Application: As students, the team should strive to develop their skills and knowledge in

AI, software development, and ethical practices throughout the project.

● Performance: High - The team should actively seek learning opportunities and take

responsibility for the project's outcomes.

3) Honesty, Integrity, Fairness

● Application: The team should be transparent about the capabilities and limitations of

the AI Class Scheduler and ensure that it treats all students fairly.

● Performance: High - The team should prioritize transparency and fairness in the

development and presentation of the project.

4) Conflict of Interest

● Application: The team should disclose any potential conflicts of interest within the team

or with external stakeholders.

● Performance: High - The team should maintain open communication and address any

potential conflicts of interest promptly.

5) Confidentiality and Proprietary Information

● Application: The team should protect the privacy and confidentiality of student data

used in the AI Class Scheduler.

56

● Performance: High - The team should implement appropriate security measures and

adhere to data protection regulations.

6) Competence and Quality of Work

● Application: The team should continuously improve their skills and the quality of the AI

Class Scheduler throughout the project.

● Performance: High - The team should set goals for improvement and regularly assess the

project's quality.

7) Professional Development

● Application: The team should engage in learning opportunities related to AI, software

development, and ethical practices during the project.

● Performance: High - The team should actively seek resources and participate in relevant

training, seminars, or courses.

7.3 Most Applicable Professional Responsibility Area
Public Safety, Health, and Welfare

The most applicable professional responsibility area for the AI Class Scheduler project is "Public

Safety, Health, and Welfare." As the project directly impacts the well-being of students by

generating their class schedules, it is crucial to ensure that the AI algorithm is designed to be

fair, non-discriminatory, and equitable.

57

8. Closing Material

8.1 Discussion
The main goal of our project is to create an application that utilizes user-input to create a

semester-based schedule that is fine-tuned to the user’s preferences. The requirements for a

complete project are that we have a web application that uses AI to create a schedule

automatically, and that these schedules can be easily created and stored by students.

Given that our project is not complete yet, the requirements have yet to be met but that does

mean they will eventually be met. That said, we do still have the main goal in mind of making a

schedule generation web application oriented toward students. So long as we prioritize (a.) the

automatic creation of a schedule and (b.) the fact that students are our main users, then the

requirements for our project will be met.

8.2 Conclusion

Current Solution Evaluation

At this point in the development process, our team has created a web application prototype,

implemented backend infrastructure for hosting, database storage, and artificial intelligence

access, and began training and testing with ChatGPT-4.0 artificial intelligence. In our current

state, most developmental testing has been conducted locally, and has not yet utilized the

cloud.

Milestone Evaluation

Iowa State A.I. Schedule Companion v1.0 Completion - Deadline: March 29, 2024
Regarding this milestone, our team has completed this milestone. Our team has successfully

met the criteria listed, namely: majority of the anticipated webpages have been initialized

(though the designs may not be finalized,) our web application can be compiled locally and

display webpages without errors, and our backend infrastructure has been setup and is

accessible.

58

Conduct User Test Run - Deadline: April 5, 2024
Overall, this milestone is intended to act as the first significant trial of our application’s primary

functionalities, namely that our web application can utilize artificial intelligence to generate a

class schedule.

In our current state, our application has not met this milestone as integration has not yet been

fully completed. The various components of our application (frontend user interfaces, backend

databases, and artificial intelligence) work independently, but integrated testing has not been

conducted.

One major influence that prevented this milestone from being completed successfully was

deployment and integration set backs when trying to use AWS in GitLab. This was an issue we

faced initially, and were able to mitigate by using a student-owned GitHub repository, but in

order to use ETG-provided funding for artificial intelligence training, hosting, etc., we needed to

utilize the designated senior design GitLab. However, using this GitLab led to difficult issues

regarding AWS deployment.

An additional factor on this milestone was the impact of other coursework for all team

members; as the semester progressed, time that could be designated toward web development

and database structuring fluctuated, reducing the overall amount of time being devoted the

integration effort as a whole.

Please refer to section 3.3 Project Proposed Milestones and Evaluation Criteria for more

information about the above milestones.

The Future of Iowa State A.I. Schedule Companion

Although our second milestone was not achieved this semester, our team has put in a great

amount of effort and the current state of our application is not far behind. Our biggest pushes

coming forward will be to finish integration for all components of our web application, and try

complete a user test run prior to the end of the semester. Luckily for this project, we still have

more time to put into development, as our application’s objectives are still within reach.

59

8.3 References
[1] Vercel, “Docs | Next.js,” nextjs.org. https://nextjs.org/docs

‌[2] MUI, “Material UI Components,” MUI. https://mui.com/material-ui/all-components/

‌[3] “OpenAI API,” platform.openai.com. https://platform.openai.com/docs/api-reference

[4] “Course Planner: Iowa State University,” classes.iastate.edu.

https://classes.iastate.edu/planner (accessed Mar. 19, 2024).

[5] I. S. U. Office of the Registrar, “Workday FAQ | The Office of the Registrar | Iowa State

University,” www.registrar.iastate.edu.

https://www.registrar.iastate.edu/resources/workday-faq (accessed Apr. 26, 2024).

[6] Iowa State University Workday. Workday, Inc., 2024. [Online].

[7] LangChain, “Quickstart,” js.langchain.com.

https://js.langchain.com/docs/get_started/quickstart/

‌

60

8.4 Appendices
For 4.2.3 Functionality, there were two additional figures which were created but not used.

Figure 6.0: Hypothetical User Statistics Webpage Design.

This was a hypothesized page from our website, it would display the stats of the student. This

would allow them to much more easily see their own information, such as GPA, current credits,

needed credits, and current classes. The reason this is simpler is because with AccessPlus, one

had to undergo an audit and scroll through to find the wanted information. But with this tab of

the website, all the wanted (or at least, what we thought they wanted) information would be

displayed.

61

Figure 6.1: Hypothetical Audit Information Webpage.

Another hypothesized page of the website, this one had all the audit information. While the

stats page had specific information, this had all of it to access. As well, the thought that one

could manually input their own audit was implemented here.

Although these two pages are less guaranteed than those already displayed in Functionality, the

Stats page seems like a great idea and would definitely make it more convenient for students if

they wanted their own information. As with the audit, there would be some struggle in the

manual input of audit info, but access to audits would still be likely.

62

9. Team

9.1 TeamMembers
TeamMembers:

● Koby Fowler

● Chandrashekar Tirunagiri

● Raghuram Guddati

● Jacob Paustian

● Christian Deam

● Anna Huggins

9.2 Required Skill Sets

Frontend Skills

● NextJS abstraction and programming abilities

● General user interface design knowledge (navigation, page layouts, etc.)

● Integration to backend database capabilities

Backend Skills

● Database

○ Understanding PostgreSQL database tables and linking

○ Integration to frontend capabilities

● Artificial Intelligence

○ Understanding of OpenAI API integration, training, and usage

● Hosting Skills

○ Knowledge of Amazon Web Services (AWS) deployment setup and website

hosting

9.3 Skill Sets Covered by the Team

Frontend Skills

● Covered by:

○ Chandrashekar Tirunagiri

○ Anna Huggins

63

Backend Skills

● Covered by:

○ Raghuram Guddati

○ Jacob Paustian

○ Koby Fowler

○ Christian Deam

9.4 Project Management Style Adopted by the Team
For this project, our team is utilizing a Waterfall project management style. Please refer to

section 3.1.1 Project Management, for additional information on this process.

9.5 Initial Project Management Roles
● Koby Fowler - Overall Application Leader

● Chandrashekar Tirunagiri - Frontend Design Leader

● Raghuram Guddati - Backend Design Leader

● Jacob Paustian - Artificial Intelligence Research Leader

● Christian Deam - Meeting Manager

● Anna Huggins - Team Manager

64

9.6 Team Contract

Team Procedures

Communication Preferences

Regular Team Meetings:

● In-Person: (preferred)

○ Location: Parks Library or Student Innovation Center
○ Time: Monday, 4:30pm

● Virtual:

○ Location: Microsoft Teams
○ Time: Monday, 4:30pm

*Note: Our preferred method of team meetings is in-person, but we will allow the virtual option

to give all team members some added flexibility.

General Communication:

● Primary Communication:

○ Microsoft Teams & Snapchat

● Teaching Assistant Communication:

○ Discord

General Policies

● Decision-Making:

○ Majority vote; group discussions for major decisions during team meetings

● Record-Keeping:

○ Weekly meetings as needed
■ Christian Deam (Meeting Manager) will manage the documentation and

scheduling of meetings

65

Collaboration & Inclusion

● Identifying & resolving collaboration or inclusion issues:

○ During team meetings, reserve time for everyone to bring up any additional
comments and concerns

○ Utilize daily communication for any questions throughout the week (i.e.
Microsoft Teams & Snapchat)

○ If issues cannot be resolved within our group, escalate issues to discussion with
our TA

Participation Expectations

Individual Expectations

● Attendance, punctuality, and participation at all team meetings:

○ All team members must at least attempt to attend meetings that pertain to them
○ i.e.) Front-end developers will attend front-end meetings, and all team members

will attend weekly full-team meetings as frequently as possible

● Level of responsibility for fulfilling team assignments, timelines, and deadlines:

○ All team members must at least attempt all assigned tasks by the next meeting

● Level of communication with other team members:

○ Be in contact at least once a week
○ Respond to direct team messages as soon as possible

● Level of commitment to team decisions and tasks:

○ All team members should work toward base project completion by the final
deadline

66

Leadership

Assigned Roles

Overall Application Leader: Koby Fowler
Frontend Design Leader: Chandrashekar Tirunagiri
Backend Design Leader: Raghumram Guddati
A.I. Research Leader: Jacob Paustian
Meeting Manager: Christian Deam
Team Manager: Anna Huggins

*Note: These assigned roles do not limit team members' responsibilities but act as guidelines
for primary tasks for each member.

Individual Skills & Expertise

● Jacob Paustian

○ For my skills and expertise, I have front/backend dev experience along with some

low-level programming

● Chandrashekar Tirunagiri
○ Experienced in backend development:

■ Some experience from internships

○ Would like to work on frontend for new experiences

● Raghuram Guddati
○ Experienced in backend and frontend development:

■ Higher proficiency in backend development
● Christian Deam

○ Moderate backend experience and minor front-end knowledge
○ Extensive programming knowledge and experience

● Anna Huggins
○ Experienced in frontend design

■ Preference toward frontend development
■ Android Studio development

○ General programming experience:
■ Java, C, C#

○ No recent web design experience, but open to learning throughout the project.
● Koby Fowler

○ Experienced in full stack development from a job and leading a team of
engineers to build an application.

■ Preference is infrastructure or backend, but can do frontend as well

67

Strategies for Accountability & Responsibility

● Supporting and guiding team members’ work:

○ Weekly meetings
○ Consistent communication (weekly, daily, as needed)
○ Positive feedback

● Recognizing the contributions of team members:

○ Use of GitHub activity heatmap to check code contributions
○ Use of attendance log of team meetings for group attendance
○ Discussion of individual progress during team meetings

Goal-Setting, Planning, & Execution

Overall Team Goal for this Semester (Spring 2024)

Completion of a working baseline application

● Completion of an application that can assist students and academic advisors in creating
schedules that best fit the students' needs. This application will use ChatGPT 4.0 API to
help decide the best schedules.

Strategies for Maintaining Our Goal

● Individual & Team Assignments:

○ Work will be assigned based on leadership roles and individual expertise listed
○ Git Issues will be utilized to handle specific assignments

● Strategies for Keeping on Task

○ Weekly SCRUM-style meetings will be held to ensure everyone is completing
their assigned tasks and avoid procrastination

Consequences for Not Adhering to Team Contract

Handling Infractions of Team Contract

● Initial Infractions:

○ Discuss contract infractions in team meetings with all group members
○ Goal: determine if there is additional assistance that can be provided to prevent

future infractions

68

● Continual Infractions:

○ Inform our TA of our team’s current infractions and status, as well as any previous
mitigation techniques previously used

Team Signatures

Contract Agreement

a) I participated in formulating the standards, roles, and procedures as stated in this
contract.

b) I understand that I am obligated to abide by these terms and conditions.
c) I understand that if I do not abide by these terms and conditions, I will suffer the

consequences as stated in this contract.

1) Koby Fowler DATE: 1/29/2024
2) Chandrashekar Tirunagiri DATE: 1/29/2024
3) Anna Huggins DATE: 1/29/2024
4) Raghuram Guddati DATE: 1/29/2024
5) Jacob Paustian DATE: 1/29/2024
6) Christian Deam DATE: 1/29/2024

69

